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1. Introduction

The quantitative characterization of biomolecular interactions is of fundamental importance for our
understanding of cellular mechanisms. Various methods have been applied to measure the thermodynamics
and kinetics of such interactions, but many of those commonly used such as gel shift, nitrocellulose filter
binding, or surface plasmon resonance are restricted to systems that are bound to or confined within some
kind of matrix.

For measuring binding parameters with an accuracy that allows to distinguish between different binding
mechanisms, cooperativity etc., one needs to determine these quantities free in solution. Classical titration
methods which monitor an optical parameter such as absorbance, fluorescence intensity or depolarization,
or circular dichroism, have the disadvantage that often large quantities are needed and binding constants
greater than 108 M-1 can be measured only with great difficulty because of the limited sensitivity.

Fluorescence correlation spectroscopy (FCS) is a method that has recently gained importance for the
measurement of interactions between biomolecules in solution. It is used to determine the concentrations
and hydrodynamic properties of fluorescent molecules by analyzing their number fluctuations.

This technique and its theoretical foundations have been described some time ago 1-3, but routine
measurements of biomolecular interactions have become possible only by recent improvements4,5: these
include the use of confocal optics for excitation and detection, and avalanche photodiode detectors that offer
a quantum efficiency > 50% in the red range of the visible spectrum (a factor of ten over that of typical
photomultipliers).

The principle of the method is shown
schematically in Fig. 1. The fluorescent
molecules are excited in a very small detection
volume (ª 1 fl) with a laser beam focused
through a microscope lens. The emitted
fluorescence is detected through the same
optics; excitation and emission wavelengths are
separated by a dichroic mirror and filters.

Very small concentrations (< 1 pM) may be
detected because individual fluorescent particles
will give clearly distinguishable bursts of
fluorescence intensity above the background
arising from detector noise, Raman scattering
and optical imperfections. The amplitudes and
characteristic time scales of the measured
fluctuations are directly connected to
macroscopic properties such as particle
concentration or diffusion constants; therefore
FCS can be used to measure concentrations and
sizes of fluorescent molecules in solutions.
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 Fig. 1: Schematic principle of the FCS method.



As an example, interactions between molecules
may manifest themselves in a decrease of the
measured concentration: when dimers are
formed, only half as many particles are present
in the solution. In parallel, the mean residence
time of the molecules in the observation
volume will increase because of their slower
diffusion.

Due to the small focus of the laser beam,
measurements inside biological objects also
become possible. A typical high-resolution
microscope lens has a focal spot of 300 nm
diameter and 1.5 µm length, such that
diffusion processes inside cells or organelles
can be probed in a position-dependent manner.
FCS has for instance been used to probe
chromatin in the cell nucleus6.

Another recent development in FCS is the use
of two-color detection with cross-correlation
(FCCS; Fig.2)7,8. Here emitted light from the
same focal volume is detected at two
wavelengths, and particles which fluoresce at
both wavelengths will give simultaneous bursts of intensity in the two channels. This correlated emission is
detected by computing a cross correlation function. FCCS is a convenient means to show binding between
two ligands labeled with different fluorophores because the complex will show correlated fluorescence at
the two wavelengths.

2. Theoretical foundation of FCS

2.1. Concentration fluctuations in small systems

In a solution of concentration c, the
fluctuation of the instantaneuos number of
solute molecules N in a given volume
element V is <∂N2> = <N>, where <N>
= c*V is the average number of molecules
in V and <∂N2> = <(N-<N>)2> the mean
squared fluctuation. The time dependence
of the fluctuations is directly related to the
diffusion coefficient of the molecule (see
below). By observing the concentration
fluctuation of a solute in a very small
volume of known size, one can thus
determine its concentration and its diffusion coefficient.

Let us assume we measure the fluorescence of a 10-9 M rhodamin solution in volume elements of various
sizes. Table 1 shows the absolute and relative number fluctuations for this case. In a classical fluorescence
spectrometer the typical observation volume is of the order of 1 ml. It is easily seen that at this sample size
no observable fluctuation is expected. If one, however, measures the fluorescence of the same solution in a
smaller volume, the fluctuations become increasingly important until they reach the size of the fluorescence
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Fig. 2: Principle of two-color FCCS.

Table 1: Number fluctuations in a 1 nM solution as a function of volume

Size [mm] Volume [l] # of particles ∆N ∆N/N [%]

10 10-3 6.023◊1011 776080 0.00013

1 10-6 6.023◊108 24541 0.0041

0.1 10-9 6.023◊105 776 0.129

0.01 10-12 602.3 24.5 4.075

0.001 10-15 0.6023 0.776 128.9



signal itself at a sample size of 1 fl; here, less than one molecule is present in the observation volume on
average. The characteristics of the fluorescence fluctuations and their relation to molecular properties are
summarized in the following.

2.1.1. Autocorrelation, one species

The primary data obtained in an FCS measurement is the time-dependent fluorescence intensity F(t), which
is proportional to the number of particles in the observation volume at time t. The autocorrelation function of
F(t) contains all relevant information relating to the diffusion of the fluorophores. The normalized
autocorrelation function G(t) is computed as

G(t) = F(t)F(t + t)
F(t) 2 (1)

For obtaining quantities such as diffusion coefficients, concentrations or reaction rate constants, one has to
fit a theoretical correlation function to the measured G(t) which is based on a model that contains these
quantities as free parameters. For a solution of a single fluorescent species with diffusion coefficient D and
molar concentration c and for Gaussian profiles for the excitation intensity and detection efficiency, G(t)
evaluates to 5:
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Here Veff is the effective observation
volume which depends on the geometry of
the focus for excitation and emission, w0

and z0 are the half-widths of the focus in
the x-y plane (the observation plane of the
lens) and in the z-direction, respectively.

Veff , w0 and z0 can be measured
independently by calibration with a
solution of a fluorophore of known
concentration and diffusion coefficient. If
only relative changes are of interest, one
can use the average  particle number N =
cVeff and an effective diffusion time tdiff =
w0

2/4D as parameters:
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k (also called the structure factor) is the axial ratio of the observation volume, z0/w0.

For a high aperture lens (NA = 1.2) at optimal alignment k typically ranges between 4 and 6. As can be
seen in Fig. 3, the influence of k on the shape of the correlation function is rather small in this region, and
errors on the measured G(t) that are due to insufficient statistics or slowly diffusing components such as
dust or aggregates may easily lead to a wrong estimate for k. In a typical FCS experiment one would
therefore determine k on a monodisperse solution of a known fluorophore and keep its value fixed for the
measurements of the unknown sample.
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Fig. 3: Influence of the structure factor k on the FCS autocorrelation
function. Three curves are displayed for the same diffusion time t and k
= 1,4,1000. Since k ≥ 4 for typical confocal optics, the relevant range
in practice is between the rightmost two curves.



2.1.1.1 Concentration determination

The intercept of the FCS autocorrelation function G(t) is inversely proportional to the number of particles in
the focal volume, and thus to their concentration. In practice, deviations from this ideal behavior are found
at very high and very low concentrations. At low concentrations these deviations are due to the background
which becomes comparable to the fluorescence signal, and which is caused by incomplete suppression of
the excitation light, detector dark counts and background fluorescence. At a particle concentration c the
measured particle number N in the presence of background is then

N = cVeff 1+ v
c( )2

(4)

where v = U ƒF  is the ratio of the background signal to the normalized fluorescence intensity of the
fluorophor. Fig. 4 shows this effect on a solution of Texas Red - cystein over a concentration range of

50 fM to 1 µM. Deviations at high
concentrations are due to slow fluo-
rescence intensity fluctuations which
can arise from slow adsorption of the
dye to the cuvette walls or to larger
particles (e.g. dust). If the concen-
tration of the dye is known, the
effective detection volume Veff and the
relative background v can be obtained
from a fit to the curve in Fig. 4. With
the two different lenses used, these
parameters are  Veff = 0.26 fl and v =
2.4.10-10 M for the 60x/1.2W lens and
Veff = 1.21 fl and v = 5.5.10-10 M for
the 60x/0.9W lens.

2.1.2. Multiple species

In a mixture of molecules with
different diffusion coefficients the
fluorescence intensity autocorrelation
function is a sum of the contributions
of the individual species. The general
form of G(t) for a mixture of m
different fluorescent species with
diffusion times tdiff,i is then given by

G(t) = 1
N

rigi (t)
i=1

m
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The ri are the relative amplitudes corresponding to molecules with distinct diffusion coefficients; they are
related to their concentrations ci by
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Fig. 4: Observed particle number N and diffusion time tdiff as a function of
sample concentration for a solution of Texas Red-cystein. Two lenses with
different numerical apertures were used. It is seen that reliable diffusion times
are obtained down to sample concentrations of 200 f    M    .
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(6), where fi is the quantum yield of species i.

2.1.3. Triplet contribution

Up to now only number fluctuations in the detection volume have been considered to contribute to the
fluctuations of the light intensity at the detector, under the simplifying assumption that an excited fluorophor
will emit a constant light flux. Because of the quantum nature of light and the photophysics of fluorescent
molecules this is not the case. The most important effect that has to be considered is a transition of the
excited molecule into the triplet state. This will 'interrupt' the stream of photons for approximately the triplet
lifetime of the fluorophor and add another contribution to the autocorrelation function which - in good
approximation - is then9:
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The amplitude of the triplet term b and its relaxation time l increase with the excitation light intensity up to a
limit given by the excitation, emission and intersystem crossing probabilities of the fluorophore. Practically,
b can reach amplitudes higher than the number correlation function itself. Since relaxation time of the triplet
term is of the same order as the diffusion times of small molecules (some µs), it is important to conduct the
FCS experiment with a laser intensity that keeps b as small as possible.

2.1.4. Two-color cross-correlation

The detection of specific binding between biomolecules by FCS depends on a change in molecular size:
when the diffusion time changes sufficiently upon binding, the complex can be distinguished in G(t) as a
second species and its concentration determined (Eqs. 5 and 6). However, in cases when the diffusion time
changes only very slightly or not at all, i.e. when a non-fluorescent ligand binds to a larger fluorescent
particle or in the case of exchange reactions (see below), this approach is not practicable anymore.

Recently Schwille et al. have presented a device for two-color fluorescence cross-correlation spectroscopy
(FCCS)8. In this method the fluorescence is detected at two distinct wavelengths simultaneously in the
same detection volume (Fig. 2). The signals from the two detectors are analyzed by computing their cross-
correlation function. It is easily seen that in a mixture of two fluorescent molecules emitting at the two
wavelengths but not interacting with each other the particles will diffuse independently and the amplitude of
the cross-correlation function will be zero. On the other hand, when the particle is labeled with two dyes
and emits simultaneously at the two detection wavelengths, the cross-correlation function is equal to the
autocorrelation function for single-color FCS (assuming equal detection efficiencies and exact overlap of the
detection volumes for the two channels). This latter case occurs when the two fluorescent species form a
complex.

In FCCS, therefore, the amount of complex formation between two fluorescently labeled  biomolecules can
be obtained simply by measuring the cross-correlation amplitude.

2.2. Construction of a typical FCS instrument

2.2.1. The confocal setup

An inverted microscope with attached confocal optics represents a very convenient means to measure flu-
orescence fluctuations in a very small volume. Fig. 5 shows a picture of a setup developed in our laboratory
(Tewes and Langowski, manuscript in preparation).



The laser source in this case
is an argon/ krypton laser
coupled into a fiber which is
attached to the box con-
taining the confocal optics at
G. The beam emitted from
the end of the fiber is
collimated and focused in D;
the position of the laser
focus can be adjusted in
three dimensions by micro-
meter screws. A is a filter/
dichroic mirror combination
which selects a laser wave-
length and reflects it into the
video port of the
microscope (H). The micro-
scope lens focuses the laser
beam into the measuring cell
(outside the picture), and
the emitted fluorescence is

imaged by the same lens through the dichroic mirror A on the pinhole E. The laser exit point in D can be
adjusted such that its image in the measuring cell coincides with that of the pinhole E (confocal condition).
B and C are dichroic mirror/filter combinations which select the fluorophore emission wavelengths and
image the pinhole on the active area of the avalanche photodiode single-photon detectors F. The photon
pulse stream is sent to the correlation electronics, where the autocorrelation function is formed and
analyzed.

2.2.2. Lenses

The microscope lenses used in FCS should be of very high numerical aperture (at least 0.9) to minimize the
size of the focal volume and therefore maximize the fluctuation amplitude for a given fluorophore
concentration. Some lenses used in
FCS and their characteristics are
described in Table 2.

The sample is generally present in
aqueous solution and is observed in an
inverted microscope through a standard
cover slide (0.13-0.17 mm thickness).
In most cases a water immersion lens
is used because an oil immersion lens will lose focus very close (some 4 to 6 µm) above the inner surface of
the cover slide. The water immersion lens has a focal spot of very high quality even at working depths of
200 µm above the cover slide surface.

The high aperture water-immersion lenses all are adjustable for varying cover slide thickness. This
adjustment is important as Fig. 6 shows: while the total fluorescence intensity varies only slightly with the
setting of the cover slide adjustment of the lens, this parameter has a strong effect on the number of
molecules in the observation volume and on the measured diffusion time.

Some lenses exist that can be adjusted for immersion and sample fluids of varying refractive index, such as
water / glycerol / sucrose solutions; such lenses have been applied successfully in FCS 5.

Fig. 5: Confocal FCS attachment to an inverted microscope (explanation see text).

Table 2: Some microscope lenses used in FCS

Type Power NA characteristics

Zeiss C-Apochromat 40 1.2 correction for cover glass thickness
Olympus 60 1.2 correction for cover glass thickness
Olympus 40 0.9 large working distance (2mm)



2.2.3. Laser

Generally, a CW laser is used for excitation.
Emission wavelengths of typical CW lasers
that can be used in FCS are summarized in
Table 3. The correct alignment of two
excitation lasers for two-wavelength
excitation into the same focal spot is a
formidable mechanical problem8; multi-
wavelength lasers, such as Ar or Ar/Kr ion
lasers, offer the advantage that this alignment
is avoided.

2.2.4. Optics, filters

For separating the excitation and emission
wavelengths in FCS, usually dichroic beam
splitters and interference filters are used. For
multi-wavelength lasers the excitation
wavelength is selected  with a suitable
bandpass filter in the excitation pathway.
Even for single-wavelength lasers we found
such a filter important for obtaining good
results, since some parasitic light is usually
present. The dichroic mirror, on the other
hand, is not essential and might be replaced
by a beam splitter that directs only 10% of
the excitation light into the sample, because
the laser power is usually not a limiting
factor. The fluorescence emission is detected
through a second filter which can be of the
low-pass or bandpass type depending on
whether the Raman scattering from water
needs to be suppressed or not.

2.2.5. Detector

One of the essential components of the FCS
device is a detector that registers the emitted
photons with very high efficiency. Most of
the dyes used in FCS emit in the yellow to
red range of the spectrum, where the
quantum efficiency of even red-enhanced
photomultipliers is of the order of a few
percent. However, recent avalanche
photodiode detectors, such as the SPCM
series (EG&G optoelectronics, Vaudreuil,

Quebec, Canada), have a quantum yield of up to 70% at 600 nm, with dark count rates of 50 cps or lower.
The advent of these devices has greatly enhanced the practicability of FCS, because very often count rates
can be as low as a few hundred cps even with avalanche detectors.
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Fig. 6: effect of adjustment of  cover slide thickness on the effective
focal volume in FCS. The samples were 5 nM solutions of
Fluorescein-cystein (�) or Texas Red-cystein (�).

Upper graph: measured fluorescence intensity (photon count rate in
kHz), middle: reciprocal of particle number in observation volume,
lower: measured diffusion time.

Table 3: Lasers applied in FCS, their powers and wavelengths

Wavelength power (mW) Type of laser
442 10 He/Cd
457, 488, 514 10-200 air-cooled argon ion
488, 514, 568 10-50 air-cooled argon/krypton ion
510 10-200 diode-pumped frequency-

doubled Nd/YAG
543.5 1-5 green He/Ne
632.8 5-50 red He/Ne



2.2.6. Autocorrelator

The computation of the autocorrelation function (ACF) of the fluorescent light intensity is central to the FCS
experiment. Generally, the ACF is constructed from the detected photon pulses by an electronic
autocorrelator. This device multiplies the number of pulses n(t) counted during a time interval dt with the
number n(t-t) counted during the same interval at an earlier time, building the average  <n(t)n(t-t)>. This
process is done simultaneously for a large number of different time delays t, accumulating the ACF G(t) in
real time.

Modern autocorrelators will allow  to measure the ACF simultaneously over a range of delay times of 10-8 s
to > 1000 s, with a choice of either auto- or cross-correlation mode (e.g. ALV- 5000, ALV GmbH,
Langen, Germany).

2.3. Sample requirements

The measured sample should fulfill some basic conditions for a successful FCS experiment. First, care has
to be taken in the choice of the labeling dye. An obvious criterion is that its excitation and emission maxima
should be compatible with the laser light source and filters used. Furthermore, many systems (such as
living cells) exhibit intrinsic fluorescence which can cause artifacts; in such cases dyes are recommended
that can be excited in the red part of the visible spectrum (such as Cy5). A large selection of fluorescent
dyes and their derivatives can be found in the Molecular Probes catalog (Molecular Probes, Eugene,
Oregon, USA).

Self-association of the dye or non-specific binding to sample impurities can lead to the formation of
fluorescent aggregates. Their presence interferes with the measurement because another, usually slower
component will be present in the ACF as an artifact. Self-association is especially critical with large
hydrophobic fluorophores, such as Texas Red, and when the sample is labeled to a high degree, as in
cross-correlation experiments where labeling of 100% of the sample molecules is necessary. In those cases,
care has to be taken that the association state of the biomolecule is the same as for the non-labeled sample.
This can be verified by other methods, e.g. light scattering or analytical ultracentrifugation.  

3. Some examples from current research

3.1. Triplex formation

DNA triple helices can be formed by
binding a single-stranded homo-
pyrimidine sequence to a comple-
mentary homopurine-homopyrimidine
duplex10,11. The direct observation
of this complex formation in solution
has been difficult because of the lack
of an optical signal which could be
used for its detection. FCS is a very
convenient means for studying the
binding thermodynamics and kinetics
of triplex formation, because  the
complex has a significantly smaller
diffusion coefficient than the free
ligand. Thus, two relaxation times can
be distinguished in a mixture of
complex and free ligand and the
relative amounts quantified. Because
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FCS is relatively fast, the kinetics of complex formation can be observed on a time scale of minutes.

In a recent study (Pfannschmidt and Langowski, manuscript in preparation), triplex formation was studied
on the 27 bp sequence 3’-TTCCTCCTTCCTTCCTTCCTTCCTCCC-5’ contained in a 2.5 kbp superhelical
plasmid. The complementary triplex-forming oligonucleotide (TFO) had the same sequence in opposite
direction and was rhodamine-labeled at the 5’-end. The measurements were done in 10 mM sodium acetate,
50 mM MgCl2, 0.01% NP-40 at pH values between 4.0 and 7.0.

Here we used a Zeiss/Evotec Confocor FCS spectrometer with an excitation wavelength of 488 nm. The
diffusion times of the free oligonucleotide and of the complex were sufficiently different that the two
components of the autocorrelation function could be separated. The free TFO had a diffusion time between
140 and 200 µs and the complex between 3.56 and 4.25 ms. These variations are due to the alignment of
the instrument, which had to be repeated before each set of measurements; the ratio of the diffusion times
for the TFO and for rhodamine was constant within ±3%. The change in quantum yield upon binding was
determined separately to Qbound/Qfree = 0.35.

The binding kinetics of the rhodamine-TFO to the plasmid DNA are shown in Fig. 7. It is evident that the
quantum yield of the bound TFO has a large influence on the measured degree of binding and must be
considered in the evaluation of the data. Association rate constants k1 were determined by a fit to the initial
slope of the plot and the binding constant Kass from its plateau for large times; the dissociation rate constant
k-1 was calculated from Kass and k1. We found k1 = 3.3.103 l mol-1 s-1, Kass = 1.54.108 l mol-1, and k-1 =
2.14.10-5 s-1 at pH=7.0.

3.2. NtrC protein

NtrC (nitrogen regulatory protein C) from enteric bacteria is a transcription factor that activates a variety of
genes that are involved in nitrogen utilization by contacting simultaneously a binding site on the DNA and
RNA polymerase complexed with the s54 sigma factor at the promoter. The NtrC binding sites found in
vivo are several hundred base pairs upstream from the promoter, and activation requires looping of the
intervening DNA for interaction with RNAP·s54.

NtrC is a dimer in solution and binds
as a dimer to a single binding site as
demonstrated recently by analytical
ultracentrifugation12. While the latter
technique is a useful tool for deter-
mining the binding stoichiometry, the
binding constant is too high under
physiological conditions to be
determined at the protein and DNA
concentrations used in ultracentri-
fugation. FCS has been used recently
13 to measure the binding constant of
NtrC to a fluorescently labeled oligo-
nucleotide at low ionic strengths
where the binding is very strong and
consequently has to be measured at
very low concentrations.

An oligonucleotide was used that
contained the NtrC binding site and
was labeled with tetramethylrhoda-
mine at the 5' end of one strand.
First the diffusion time t1, the
structure factor k, the triplet
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relaxation time l, and the triplet amplitude b were determined for free DNA in the absence of protein (q =
0). At saturating protein concentrations (q = 1) the diffusion time t2 of the protein-DNA complex could be
measured. The ratio of diffusion times t1 and t2 of the two species is equal to the ratio of their translational
diffusion constants D1 and D2:

t2

t1

= D1

D2

(8)

Knowing the ratio t1/t2 which is constant, and the diffusion time of the free DNA,t1, which is calibrated
for each experiment, enables one to determine the relative amplitude of the two components with diffusion
times t1 and t2 in the measured autocorrelation function, corresponding to free and complexed DNA. Fig 8
shows a plot of the relative amount of bound DNA as a function of free protein concentration from which
the binding constant was determined by fitting a standard binding curve.

We found Kass=(7.1±2.5)◊1010     M    -1 at 15 mM KCl and Kass = (1.4±0.4)◊108      M     -1 at 600 mM KCl. This
result shows that the binding constant is strongly salt dependent and can be interpreted by the formation of
two ion pairs upon binding of an NtrC dimer to DNA13.

From the cited ultracentrifugation studies 12 is has been suggested that one NtrC octamer can bind two
DNA double strands simultaneously on independent binding sites. This can also be shown directly by
FCCS. When NtrC protein is added to a 1:1 mixture of fluorescein- and tetramethylrhodamin-labeled
oligonucleotide containing the specific binding site, a significant increase in the cross correlation amplitude
is seen which reaches its saturation at a stoichiometry of 2 oligonucleotides per NtrC. The maximum cross
correlation amplitude is exactly that expected when 50% of the complexes carry one fluorescein- and one
rhodamin-labeled DNA, and 25% each carry two DNAs of the same kind; this ratio is expected simply from
statistics.

3.3. Vimentin oligomerization

Vimentin is one of the major protein components of the cytoskeleton of eukaryotic cells. One of its essential
properties is the formation of intermediate filaments through self-association. The first step of this reaction
is a dimerization where two protein monomers associate side by side to form an elongated rod; the
formation of tetramers from two dimers is generally assumed to be the next step. Using FCS one can decide
whether the protein forms a dimer or a tetramer in solution, and whether subunits can exchange between the
complexes.

3.3.1. Stoichiometry of vimentin oligomers

The simplest method for determining the number of proteins per vimentin oligomer is to compare the mean
count rate per particle for oligomers and monomers. However, vimentin forms monomers only at very high
urea concentrations (8M), and the FCS measurement becomes problematic because of the high refractive
index of the urea solution. A comparison with free dye is imprecise because the quantum yields of the
labeled protein and the free dye may be different. Therefore we used as a reference a solution of vimentin
oligomers that had been reconstituted by dialysis from a mixture of 98% unlabeled and 2% labeled protein
in 8M urea. In this solution the majority of the labeled oligomers will carry only one labeled vimentin. The
average fluorescence intensity (count rate) per molecule can be computed for this reference and the fully
labeled sample by normalizing the integrated fluorescence intensity <F> with the average number of
particles in the detection volume, <N>, and the oligomerization stoichiometry n is then obtained as

n =
Fsample

Nsample

Fref

Nref

(9)



In the case of vimentin in 5 mM Tris.HCl, 1 mM EDTA, 0.005% Tween 20, pH 9.5 (low salt buffer), a
stoichiometry of n = 2.2±0.1 was obtained, indicating that vimentin is a dimer under these conditions.

3.3.2. Exchange of vimentin monomers measured by FCCS

For detecting the exchange of vimentin monomers between dimers in solution, FCCS can be used very
conveniently. The strategy of the measurement is to prepare vimentin samples labeled with either fluorescein
(F-vimentin) or Texas Red (TR-vimentin), mix equal amounts of the two samples and measure the FCCS
cross-correlation function (CCF).

As outlined above, the amplitude of the CCF will be zero for non-interacting molecules (except for crosstalk
between the detection channels, which cannot be completely avoided) because their diffusion is
uncorrelated. When an exchange takes place, dimers will form which contain both fluorophors and the CCF

amplitude will increase in
proportion to their concentration.

In the experiment a 1:1 mixture of
F- and TR-vimentin was
incubated for 10 min at various
temperatures, then cooled to room
temperature and measured in the
FCCS with detection channels for
fluorescein and Texas Red
emission. Fig. 8 shows the ratio
of CCF to ACF amplitudes as a
function of incubation tempe-
rature. The reference line is the
ratio that is obtained from a 1:1
mixture of  F- and TR-vimentin
monomers in 8M urea that was
dialyzed against low salt buffer to
form mixed dimers. It is clearly
seen that the proportion of mixed
dimer as detected in the CCF
increases with temperature, and
reaches the maximum value at 70

°C.

3.4. Intracellular motions

FCS can also be used to study the motion of fluorescent probes inside living cells. The probe can either be a

fluorescent component that is brought into the cell by simple diffusion or microinjection. Alternatively, a

variety of fluorescent proteins exist that can be cloned and expressed inside the cell. Green fluorescent

protein (GFP) is the most commonly known, but variants thereof exist, such as yellow, cyan, blue, and

enhanced green fluorescent proteins (YFP, CFP, BFP, EGFP).

For testing models of the intranuclear distribution of chromatin and chromosomes, we have investigated the

spatial variations of the diffusion behavior of a green fluorescent protein mutant EGFP (F64L/S65T) and of

an EGFP-b-galactosidase fusion protein in living cells with FCS. While diffusion in the cytoplasm appears

to be unrestricted and is governed by a simple random walk behavior, the diffusion in the nucleus can be
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Fig. 9: Amplitude of the fluorescence cross-correlation function between the
fluorescein and Texas Red channels for mixtures of fluorescein- and Texas Red-
labeled vimentin dimers which had been incubated for  10 min at various
temperatures. The reference line gives the value expected for complete exchange,
measured on a sample that had been mixed in 8M urea and then dialyzed to form
dimers.



described by an anomalous diffusion

process that is characterized by

x Dt t2 1
6

0
= ( ) -

t
a

with a < 1. This beha-

vior is in agreement with theories that

describe diffusion in the presence of

obstacles and polymer chain models of the

interphase nucleus. Fig. 10 shows FCS

autocorrelation functions taken in the

cytoplasm and the nucleus of an EGFP-

expressing COS-7 cell. It is evident that the

decay in the nucleus is slower that in the

cytoplasm, indicating a restricted mobility

of the protein in the nucleus. The FCS data

can be evaluated either with a simple two-

component model where a fast component

corresponds to unrestricted diffusion of the

protein and a slow

component r2 to a bound

or trapped protein frac-

tion (Fig. 11 left, graphs

A and B), or by an ano-

malous diffusion model

where the protein moves

through a network of

obstacles and dw is a

parameter related to the

obstacle density (right,

graphs C and D). N

indicates the normalized

average number of par-

ticles inside the focal

volume of the micro-

scope; a value of 1

corresponds to a concen-

tration of 60 nM EGFP. The regions marked c and n, and arrows 1 and 2, correspond to the cytoplasm and

the nucleus, respectively. It can be seen that the amplitude of the slow component, respectively the obstacle

density, increases in the nucleus relative to the cytoplasm. This probably indicates crowding of the nuclear

space by the interphase chromosomes. Work is in progress in our group that relates the anomalous

diffusion parameter dw to the fractal dimension and the density of the chromatin fiber network as predicted

from polymer models of interphase chromosomes 14,15.
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Some introductory remarks about Brownian motion and FCS theory

Jörg Langowski, DKFZ Heidelberg, Division Biophysics of Macromolecules
joerg.langowski@dkfz.de

1. Diffusion equation, Smoluchowski equation

Fick’s first law:

j D c= - grad (1.1)

Continuity equation:

∂
∂
= -c

t
jdiv (1.2)

Combining (1.1) and (1.2) we obtain Fick’s second law:

∂
∂
=c

t
cdivgrad (1.3)

This is correct as long as no external forces act on the particles, i.e. their potential energy is position-
independent. In the presence of an external potential U(r), the corresponding force F = -grad U will
induce a velocity v = F/g whereg is the friction factor of the particle:

v = - 1
g

gradU (1.4)

This velocity induces an additional flux jv = c.v. Thus, eq. (1.1) becomes

j D c
c

U= - -grad grad
g (1.5)

At equilibrium, the flux vanishes and the concentration follows a Boltzmann distribution with regard to
the potential U, therefore

D e e U
U

k T

U

k TB Bgrad grad
( ) ( )- -
= -

r r
1
g (1.6)

which is the same as

- = -
- -D

k T
e U e U

B

U

k T

U

k TB B

( ) ( )

grad grad
r r

1
g (1.7)

from which it follows immediately that

D
k TB=
g (1.8)

which is Einstein’s relationship between the diffusion coefficient of a particle and its friction factor.

The Smoluchowski equation for the diffusion in the presence of an external potential can be obtained
from eqs.(1.5), (1.8) and the continuity equation (1.2):



∂
∂
= +( )È

ÎÍ
˘
˚̇

c

t
k T c c UBdiv grad grad1

g (1.9)

2. Fluctuation-dissipation theorem

We start with the Langevin equation for the velocity of a particle of mass m and friction factor g:

m t t t«v F v( ) = ( ) - ( )g (2.1)

The formal solution for this equation is (setting b = g:/m):

v v F( ) ( ) ( )t e e dt
t

t= +- - -( )Ú0
0

b b tt t (2.2)

Multiplying both sides with v(0) and averaging leads to:

v v v v v F( ) ( ) ( ) ( ) ( ) ( )0 0 0 0
0

t e e dt
t

t= +- - -( )Úb b tt t (2.3)

We can show that v(0) and F(t) are uncorrelated; therefore the term under the integral becomes zero
and we obtain simply

v v v( ) ( ) ( )0 0 2t e t= -b
(2.4)

This is the velocity autocorrelation function of the particle.

The mean square displacement of a particle with diffusion coefficient D in a three-dimensional random
walk is

R Dt2 6= (2.5)

and is also related to the velocity autocorrelation function by

R t d

R t t t dt dt

t

tt

( ) = ( )

( ) = ( ) ( )

Ú

ÚÚ

v

v v

t t
0

2
1 2 1 2

00

(2.6)

We then assume that v v v vt t t t1 2 2 10( ) ( ) = ( ) -( ) ; v v0 0( ) ( ) =
Æ•

t
t

; v v v v0 0( ) ( ) = ( ) -( )t t  and

obtain after integration by parts

R t t d
t

2

0

2 0( ) = -( ) ( ) ( )Ú t t tv v (2.7)

With eq. (2.5) we obtain



D
t

t d
t

= -( ) ( ) ( )Ú1
3

0
0

t t tv v (2.8)

For t Æ • the velocity autocorrelation function is zero (eq.(2.4)), and the integral simplifies to

D d= ( ) ( )
•

Ú1
3

0
0

v v t t (2.9)

This is a so-called Green-Kubo relationship that connects the autocorrelation function of a fluctuating
quantity with a transport coefficient.

Now the mean kinetic energy of the particle is m k TB2
3

2
2v =  in thermodynamic equilibrium

(according to the equipartition theorem); this is related to the area under the velocity autocorrelation
function by

v v v0 0
3

0

2

0

( ) ( ) = = ◊
•

-
•

Ú Út t t
g

btd e d
k T

m

mB( ) (2.10)

and therefore, with (2.9), we obtain again the Einstein relationship, D k TB= g  (eq.(1.8)).

(Note: The energy dissipated per unit time by a particle dragged through a viscous medium with force
F and velocity v F= g  is «E F v F= ◊ = 2 g . Thus, eq. (2.9) relates the fluctuation of a dynamic quantity
(velocity) with the energy dissipated by this quantity; it is an expression of a more general law of
statistical physics called the fluctuation-dissipation theorem. Similar relationships can be set up for
other quantities, e.g. voltage U and resistance R: «E U R= 2 ).

We can also get to the Green-Kubo relationship through the following route. Starting again with the
Langevin equation, m t t t«v F v( ) = ( ) - ( )g , and forming correlation functions by averaging over the
product of both sides with v t +( )t , we get:

m t t t t t t«( ) ( ) ( ) ( ) ( ) ( )v v v v F v+ = - + + +t g t t (2.11)

F(t) and v(t+t) are uncorrelated (see above); integrating both sides gives

m t t d t t«( ) ( ) ( ) ( )v v v v+ = - +
• •

Ú Út t g t
0 0

(2.12)

which is completely equivalent to

m t t d t tv v v v( )«( ) ( ) ( )+ = - +
• •

Ú Út t g t
0 0

(2.13)

(here the dot denotes the derivative with respect to t), and then the left hand integral can be executed

as:



m t t d m t t

m t t

v v v v

v v v

( )«( ) ( ) ( )

( ) ( )
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= - = - +

•
•

•

Ú

Ú

t t t

g t

0
0

2

0

(2.14)

As before, we set m k TBv2 3= and obtain

k T
t tB

g
t= - +

•

Ú1
3

0

v v( ) ( ) (2.15)

Using the Einstein relationship, this is the same as eq.(2.9).

We can also obtain a general expression for the mean squared displacement of a Brownian particle for
all times t. Using eq.(2.4), eq.(2.7), and m k TBv2 3=  we get

R t
k T

m
t e dB t

t
2

0

6( ) = -( ) -Ú t tb
(2.16)

which integrated out gives

R t D t e t2 6
1

1( ) = + -( )È

Î
Í

˘

˚
˙

-

b
b

(2.17)

For t >> b-1, this reduces to R Dt2 6= , the known expression for the random walk. Expanding the

exponential at t Æ 0 we get

R t D t t t

D
t

k T

m
t tB

2 1
2

2 2

1
2

2 2 2 2

6
1

1 1

6 3

( ) ª + - + -( )È

Î
Í

˘

˚
˙ =

= ◊ = =

b
b b

b
b v2

(2.18)

In this case, the displacement is linear in t as would be expected for short times.

3. Fluorescence correlation spectroscopy: diffusion of particles in the Gaussian beam

profile of a laser focus

Fluorescence intensity fluctuations in the detection volume V:

d k dF t Q I r CEF r C r t dVex

V

( ) = ◊ ◊ ( ) ◊ ( ) ◊ ( )Ú
r r r

,  (3.1)

k: efficiency of the photodetector; Q: quantum yield of fluorophor; Iex(r): excitation intensity profile;
CEF(r): collection efficiency function of detection optics
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(CEF and beam profile are Gaussian with profile width w0 and length z0)

Thus, eq. (3.1) becomes

d dF t E r c r t dV
V

( ) = ( ) ( )Ú
r r

  , (3.3)

The autocorrelation function of the detected fluorescence intensity is

G
F t F t

F t
t

d t d( ) = +( ) ( )
( ) 2 (3.4)

and with eq. (3.3) becomes

G

E r E r c r c r dVdV
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2
  

 
(3.5)

The autocorrelation function of the concentration fluctuations <dc(r,0)dc(r’,t)> can be obtained from

the diffusion equation:

d d t
d
p t

p t

t

t

c r c r
c r

D

c

D

r r

D

r r

D

e

e

r r
r r r

r r

, ,
,

0
0

4

4

2

3 2 4

3 2 4

2

2

( ) ¢( ) =
( )

( )

=
( )

- - ¢( )

- - ¢( )
                           

   (since dc2=c) (3.6)

Eqs. (3.5) and (3.6) yield
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(3.7)

and this can be integrated for the x, y and z components using
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to yield the FCS autocorrelation function
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Here Veff = p3/2w0
2z0 is an ‘effective detection volume’ and k = z0/w0 the ‘structure factor’, the axial

ratio of the detection focal volume. Finally, since <c>Veff is equal to the average number of particles N
in the detection volume, and defining the ‘diffusion time’ tD= w0

2/4D (the mean time the particle

remains in the focal volume), we get:
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N

D D

t
t
t

t
k t
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1 1
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(3.10)

For an M-component mixture, G(t) becomes a weighted sum with terms corresponding to the different
diffusion times tD,i:
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t
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(3.11)


